Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.519
Filtrar
1.
Commun Biol ; 7(1): 453, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609439

RESUMO

The hair follicle (HF) is a self-renewing adult miniorgan that undergoes drastic metabolic and morphological changes during precisely timed cyclic organogenesis. The HF cycle is known to be regulated by steroid hormones, growth factors and circadian clock genes. Recent data also suggest a role for a vitamin A derivative, all-trans-retinoic acid (ATRA), the activating ligand of transcription factors, retinoic acid receptors, in the regulation of the HF cycle. Here we demonstrate that ATRA signaling cycles during HF regeneration and this pattern is disrupted by genetic deletion of epidermal retinol dehydrogenases 2 (RDHE2, SDR16C5) and RDHE2-similar (RDHE2S, SDR16C6) that catalyze the rate-limiting step in ATRA biosynthesis. Deletion of RDHEs results in accelerated anagen to catagen and telogen to anagen transitions, altered HF composition, reduced levels of HF stem cell markers, and dysregulated circadian clock gene expression, suggesting a broad role of RDHEs in coordinating multiple signaling pathways.


Assuntos
Epiderme , Vitamina A , Adulto , Humanos , Vitamina A/farmacologia , Cabelo , Catálise , Tretinoína , Células-Tronco
2.
PLoS One ; 19(4): e0301447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557762

RESUMO

Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.


Assuntos
Furilfuramida , Tretinoína , Humanos , Receptores X de Retinoides/genética , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Ligantes , Tretinoína/farmacologia , Tretinoína/metabolismo , Epiderme/metabolismo , Receptores Citoplasmáticos e Nucleares
3.
Biochem Biophys Res Commun ; 710: 149541, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38608490

RESUMO

For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1ß, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Glicosilação , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular , Células HL-60 , Linhagem Celular Tumoral
4.
Acta Med Indones ; 56(1): 76-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38561886

RESUMO

Incidents of leukemia in pregnancy are infrequent with only one case found from 75,000 to 100,000 pregnancies. The pathophysiological mechanism of leukemia during pregnancy is still unclear. Leukemia which occurs in pregnancy is usually acute and predominantly the myeloid type.A 35-year-old woman in her fourth pregnancy with a gestational age of 38-39 weeks, came to the emergency department (ED) with complaints of contractions since 4.5 hours before admission. The contraction was not accompanied by discharge, mucus, or blood, and fetal movements was still active. She denied complaints of fever, nausea, vomiting, dizziness, shortness of breath, weakness, fatigue, lethargy, and bleeding. Physical examination results, both palpebral conjunctiva were pale. Laboratory examination results of a complete blood count, white blood cell count were 2,930/uL, hemoglobin 8.3 g/dL, Hct 24.10%, erythrocytes 2.78x106/µL, platelets 62,000/µL. Bone Marrow Aspiration (BMA) revealed Acute Promyelocytic Leukemia (APL).APL is a subtype of Acute Myelogenous Leukemia (AML). Persistent fatigue, recurrent infections, and bleeding are common manifestations of APL. The diagnosis of APL is made by bone marrow aspiration examination, and it is safe for pregnancy. APL therapy in pregnancy uses All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO). ATRA and ATO are highly teratogenic, but recent studies have reported no fetal abnormalities.Accuracy and speed in diagnosing and initiating APL therapy in pregnancy are essential in preventing serious complications.


Assuntos
Leucemia Promielocítica Aguda , Adulto , Feminino , Humanos , Gravidez , Protocolos de Quimioterapia Combinada Antineoplásica , Trióxido de Arsênio/uso terapêutico , Leucemia Promielocítica Aguda/complicações , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Tretinoína/uso terapêutico
5.
J Drugs Dermatol ; 23(4): 209-215, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564380

RESUMO

INTRODUCTION: Chronic exposure to ultraviolet light photoages skin. Retinol, a precursor molecule to retinoic acid that causes less irritation, is available as a nonprescription, cosmetic retinoid and improves collagen production, skin elasticity, and signs of photoaging. Advances in formulation science have allowed the production of stabilized bioactive retinol formulations. This integrated analysis aims to build on previous studies and further examine the comprehensive efficacy and tolerability of topical 0.1% stabilized bioactive retinol. METHODS: This analysis included 6 vehicle-controlled studies of 0.1% stabilized bioactive retinol in women with mild-to-moderate signs of photodamage. Across all studies, the same dermatologist investigator assessed overall photodamage; wrinkles on the forehead, cheeks, and undereye area; crow’s feet wrinkles and fine lines; lack of even skin tone; and brown spots at baseline and weeks 4, 8, and 12 on a numerical scale. Tolerability was also assessed. RESULTS: Participants (retinol, N=237; vehicle, N=234) had a mean (SD) age of 47.4 (6.6) years. Retinol induced greater improvements from baseline in all signs of photoaging vs vehicle as early as week 4 and through 12 weeks of application. Few participants experienced irritation; all events were mild to moderate and transient. The most common signs of irritation were erythema (n=2) and skin scaling/peeling (n=5). CONCLUSIONS: This pooled analysis of 6 vehicle-controlled clinical studies provides new evidence for the efficacy of 0.1% stabilized bioactive retinol in improving signs of photoaging without causing major irritation. Topical 0.1% stabilized bioactive retinol was well tolerated with only a few reported cases of skin irritation. J Drugs Dermatol. 2024;23(4):     doi:10.36849/JDD.8124.


Assuntos
Envelhecimento da Pele , Vitamina A , Feminino , Humanos , Pessoa de Meia-Idade , Tretinoína/efeitos adversos , Retinoides , Método Duplo-Cego , Resultado do Tratamento , Administração Cutânea
6.
PLoS Biol ; 22(3): e3002565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527087

RESUMO

K+ channels regulate morphogens to scale adult fins, but little is known about what regulates the channels and how they control morphogen expression. Using the zebrafish pectoral fin bud as a model for early vertebrate fin/limb development, we found that K+ channels also scale this anatomical structure, and we determined how one K+-leak channel, Kcnk5b, integrates into its developmental program. From FLIM measurements of a Förster Resonance Energy Transfer (FRET)-based K+ sensor, we observed coordinated decreases in intracellular K+ levels during bud growth, and overexpression of K+-leak channels in vivo coordinately increased bud proportions. Retinoic acid, which can enhance fin/limb bud growth, decreased K+ in bud tissues and up-regulated regulator of calcineurin (rcan2). rcan2 overexpression increased bud growth and decreased K+, while CRISPR-Cas9 targeting of rcan2 decreased growth and increased K+. We observed similar results in the adult caudal fins. Moreover, CRISPR targeting of Kcnk5b revealed that Rcan2-mediated growth was dependent on the Kcnk5b. We also found that Kcnk5b enhanced depolarization in fin bud cells via Na+ channels and that this enhanced depolarization was required for Kcnk5b-enhanced growth. Lastly, Kcnk5b-induced shha transcription and bud growth required IP3R-mediated Ca2+ release and CaMKK activity. Thus, we provide a mechanism for how retinoic acid via rcan2 can regulate K+-channel activity to scale a vertebrate appendage via intercellular Ca2+ signaling.


Assuntos
Cálcio , Peixe-Zebra , Animais , Peixe-Zebra/genética , Cálcio/metabolismo , Tretinoína , Nadadeiras de Animais/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
7.
Sci Rep ; 14(1): 7411, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548913

RESUMO

Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.


Assuntos
Neuroblastoma , Tretinoína , Humanos , Tretinoína/farmacologia , Tretinoína/metabolismo , Floxuridina , Fosforilação Oxidativa , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Diferenciação Celular
8.
Cell Rep ; 43(3): 113939, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38493476

RESUMO

Morphogens are important triggers for differentiation processes. Yet, downstream effectors that organize cell shape changes in response to morphogenic cues, such as retinoic acid, largely remain elusive. Additionally, derailed plasma membrane-derived signaling often is associated with cancer. We identify Ankrd26 as a critical player in cellular differentiation and as plasma membrane-localized protein able to self-associate and form clusters at the plasma membrane in response to retinoic acid. We show that Ankrd26 uses an N-terminal amphipathic structure for membrane binding and bending. Importantly, in an acute myeloid leukemia-associated Ankrd26 mutant, this critical structure was absent, and Ankrd26's membrane association and shaping abilities were impaired. In line with this, the mutation rendered Ankrd26 inactive in both gain-of-function and loss-of-function/rescue studies addressing retinoic acid/brain-derived neurotrophic factor (BDNF)-induced neuroblastoma differentiation. Our results highlight the importance and molecular details of Ankrd26-mediated organizational platforms for cellular differentiation at the plasma membrane and how impairment of these platforms leads to cancer-associated pathomechanisms involving these Ankrd26 properties.


Assuntos
Leucemia Mieloide Aguda , Tretinoína , Humanos , Diferenciação Celular , Tretinoína/farmacologia , Tretinoína/metabolismo , Transdução de Sinais , Membrana Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo
9.
PLoS One ; 19(3): e0298956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547142

RESUMO

"Persistent organic pollutants (POPs)" have a plethora of deleterious effects on humans and the environment due to their bioaccumulative, persistent, and mimicking properties. Individually, each of these chemicals has been tested and its effects measured, however they are rather found as parts of complex mixtures of which we do not fully grasp the extent of their potential consequences. Here we studied the effects of realistic, environmentally relevant mixtures of 29 POPs on cartilage and bone development using zebrafish as a model species. We observed developmental issues in cartilage, in the form of diverse malformations such as micrognathia, reduced size of the Meckel's and other structures. Also, mineralized bone formation was disrupted, hence impacting the overall development of the larvae at later life stages. Assessment of the transcriptome revealed disruption of nuclear receptor pathways, such as androgen, vitamin D, and retinoic acid, that may explain the mechanisms of action of the compounds within the tested mixtures. In addition, clustering of the compounds using their chemical signatures revealed structural similarities with the model chemicals vitamin D and retinoic acid that can explain the effects and/or enhancing the phenotypes we witnessed. Further mechanistic studies will be required to fully understand this kind of molecular interactions and their repercussions in organisms. Our results contribute to the already existing catalogue of deleterious effects caused by exposure to POPs and help to understand the potential consequences in at risk populations.


Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Humanos , Animais , Peixe-Zebra , Poluentes Ambientais/toxicidade , Tretinoína , Vitamina D
10.
Ann Hematol ; 103(5): 1577-1586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532122

RESUMO

Acute promyelocytic leukemia (APL) is a highly curable hematologic malignancy in the era of all-trans retinoic acid (ATRA) combination treatment. However, only a modest change in early mortality rate has been observed despite the wide availability of ATRA. In addition to the clinical characteristics of APL patients, studies on the hospital volume-outcome relationship and the physician volume-outcome relationship remained limited. We aim to evaluate the association between hospital and physician volume and the early mortality rate among APL patients. The patients were collected from Taiwan's National Health Insurance Research Database (NHIRD). Early mortality is defined as death within 30 days of diagnosis. Patients were categorized into four groups according to individual cumulative hospital and physician volume. The risk of all-cause mortality in APL patients with different cumulative volume groups was compared using a Cox proportional hazard model. The probability of overall survival was estimated using the Kaplan-Meier method. All 741 patients were divided into four quartile volume groups. In the multivariate analysis, only physician volume was significantly associated with early mortality rate. The physician volume of the highest quartile was a protective factor for early mortality compared with the physician volume of the lowest quartile (HR 0.10, 95% CI 0.02-0.65). Hospital characteristics were not associated with early mortality. In the sensitivity analyses, the results remained consistent using two other different definitions of early mortality. Higher physician volume was independently associated with lower early mortality, while hospital volume was not. Enhancing the clinical expertise of low-volume physicians may ensure better outcomes.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/complicações , Tretinoína/uso terapêutico , Modelos de Riscos Proporcionais , Terapia Combinada , Resultado do Tratamento
11.
Gan To Kagaku Ryoho ; 51(3): 291-297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494811

RESUMO

An 84-year-old woman was diagnosed as having acute promyelocytic leukemia(APL)in July Year X-3. The test for promyelocytic leukemia- retinoic acid receptor alpha(PML-RARA)mRNA was positive, while that for CD56 was negative. Since her white blood cell( WBC) count was <3,000/µL, with a count of APL cells of <1,000/µL, she was started on monotherapy with all-trans retinoic acid(ATRA). In September Year X-3, complete hematological remission(CHR)was confirmed. she refused to provide consent for receiving consolidation therapy. In February Year X-2, hematological relapse occurred. She was started on re-induction therapy with arsenite(ATO), and in June Year X-2, complete molecular remission(CMR)was achieved. She was started on post-remission therapy with ATO. In August Year X-1, she developed molecular relapse and was started on tamibarotene(Am80). In October Year X-1, hematological relapse was detected, and the test for CD56 was positive. She was started on combined venetoclax(VEN)+azacitidine(AZA)(VEN+AZA). After completion of 1 course of treatment, CMR was achieved, but she developed hematological relapse after 5 courses of treatment. She died of gastrointestinal hemorrhage. This is considered a valuable case for accumulating information on the treatment of CD56-positive APL resistant to ATRA and ATO.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Promielocítica Aguda , Sulfonamidas , Humanos , Feminino , Idoso de 80 Anos ou mais , Leucemia Promielocítica Aguda/tratamento farmacológico , Trióxido de Arsênio/uso terapêutico , Azacitidina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Tretinoína/uso terapêutico , Recidiva
12.
J Cell Mol Med ; 28(7): e18205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506089

RESUMO

Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/ß-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.


Assuntos
Células-Tronco Neurais , Tretinoína , Tretinoína/farmacologia , Tretinoína/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Diferenciação Celular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
13.
Cancer Rep (Hoboken) ; 7(3): e2035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507294

RESUMO

BACKGROUND: Recent advances in the treatment of acute promyelocytic leukemia (APML) have seen unprecedented improvements in patient outcomes. However, such rapid growth in understanding often leads to uncertainty regarding superiority among candidate treatment regimens, especially when further scrutinized from an epidemiological perspective. AIMS: The aim of this systematic review with epidemiological analysis was to identify and compare commonly utilized protocols for standard-risk APML with a particular focus on complete remission (CR), overall/disease-free survival (DFS), and reported adverse events. METHODS AND RESULTS: Medline, Scopus, and CINAHL were interrogated to identify studies utilizing all-trans retinoic acid (ATRA) in addition to arsenic trioxide (ATO) and/or anthracyclines such as idarubicin (IDA) in the treatment of de-novo APML. After collation of studies, an epidemiological analysis was subsequently performed to compare protocols with regards to outcomes of interest using number needed to benefit (NNB) and number needed to harm (NNH) measures. Seventeen articles, describing 12 distinct trials, were included in the analysis. These trials made use of three unique protocols; CR rates were 94%-100% for ATO/ATRA regimens, 95%-96% for ATO/ATRA/anthracycline regimens, and 89%-94% for ATRA/anthracycline regimens. Epidemiological analysis demonstrated NNB for CR was 9.09 (ATO/ATRA vs. ATRA/IDA) and 20.00 (ATO/ATRA vs. ATO/ATRA/IDA), NNH for neutropenia was -3.45 (ATO/ATRA vs. ATRA/IDA), and NNH for infection was -3.13 (ATO/ATRA vs. ATRA/IDA) and -1.89 (ATO/ATRA vs. ATO/ATRA/IDA). CONCLUSION: The ATO/ATRA regimen is superior to chemotherapy-containing protocols at inducing remission and promoting survival in patients with APML. The regimen is better tolerated than the proposed alternatives with fewer adverse events. Future research opportunities include quantifying APML epidemiology and pursuing oral arsenic as an option for simplification of therapeutic protocols.


Assuntos
Arsenicais , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/epidemiologia , Leucemia Promielocítica Aguda/induzido quimicamente , Antraciclinas/efeitos adversos , Arsenicais/efeitos adversos , Óxidos/efeitos adversos , Resultado do Tratamento , Tretinoína/efeitos adversos , Antibióticos Antineoplásicos , 60410
14.
Methods Mol Biol ; 2754: 521-532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512687

RESUMO

Pathological alterations of the neuronal Tau protein are characteristic for many neurodegenerative diseases, called tauopathies. To investigate the underlying mechanisms of tauopathies, human neuronal cell models are required to study Tau physiology and pathology in vitro. Primary rodent neurons are an often used model for studying Tau, but rodent Tau differs in sequence, splicing, and aggregation propensity, and rodent neuronal physiology cannot be compared to humans. Human-induced pluripotent stem cell (hiPSC)-derived neurons are expensive and time-consuming. Therefore, the human neuroblastoma SH-SY5Y cell line is a commonly used cell model in neuroscience as it combines convenient handling and low costs with the advantages of human-derived cells. Since naïve SH-SY5Y cells show little similarity to human neurons and almost no Tau expression, differentiation is necessary to obtain human-like neurons for studying Tau protein-related aspects of health and disease. As they express in principle all six Tau isoforms seen in the human brain, differentiated SH-SY5Y-derived neurons are suitable for investigating the human microtubule-associated protein Tau and, for example, its sorting and trafficking. Here, we describe and discuss a general cultivation procedure as well as four differentiation methods to obtain SH-SY5Y-derived neurons resembling noradrenergic, dopaminergic, and cholinergic properties, based on the treatment with retinoic acid (RA), brain-derived neurotrophic factor (BDNF), and 12-O-tetrade canoylphorbol-13-acetate (TPA). TPA and RA-/TPA-based protocols achieve differentiation efficiencies of 40-50% after 9 days of treatment. The highest differentiation efficiency (~75%) is accomplished by a combination of RA and BDNF; treatment only with RA is the most time-efficient method as ~50% differentiated cells can be obtained already after 7 days.


Assuntos
Neuroblastoma , Tauopatias , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Neurônios/metabolismo , Diferenciação Celular/fisiologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Tauopatias/metabolismo
15.
Int Immunopharmacol ; 130: 111772, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38432148

RESUMO

Post-operative cognitive dysfunction (POCD) is a multi-etiological symptom mainly occurred in elderly people after surgery. The activation of retinoic acid receptor α (RARα), a transcriptional factor, was previously predicated to be negatively associated with the occurrence of POCD. However, the mechanisms underlying anti-POCD effects of RARα were still unclear. In this study, AM580, a selective agonist of RARα, and all-trans-retinoic acid (ATRA), a pan agonist of RAR, significantly alleviated cognitive dysfunction and increased the expression of RARα in elderly mice after surgery, which was decreased by RO41-5253, an antagonist of RARα. A bioinformatic study further predicted that the activation of RARα might produce anti-POCD effects via the restoration of synaptic proteins. Both agonists inhibited the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and the phosphorylation of nuclear factorkappa-B (NF-κB), leading to the prevention of microglial over-activation and pro-inflammatory cytokines secretion in the hippocampal regions of elderly mice after surgery. Moreover, AM580 and ATRA increased the expression of brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), and the phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element binding protein (CREB). All these results suggested that the activation of RARα prevented surgery-induced cognitive impairments via the inhibition of neuroinflammation by the reduction of the TLR4/Myd88/NF-κB pathway and the restoration of synaptic proteins by the activation of the BDNF/ERK/CREB pathway, providing a further support that RARα could be developed as a therapeutic target for POCD.


Assuntos
Benzoatos , NF-kappa B , Complicações Cognitivas Pós-Operatórias , Receptor alfa de Ácido Retinoico , Tetra-Hidronaftalenos , Animais , Camundongos , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos Endogâmicos ICR , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , NF-kappa B/metabolismo , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Receptor alfa de Ácido Retinoico/agonistas , Transdução de Sinais , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Tretinoína/farmacologia
16.
PLoS One ; 19(3): e0300072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527023

RESUMO

Stroke is a leading cause of death and long-term disability which can cause oxidative damage and inflammation of the neuronal cells. Retinoic acid is an active metabolite of vitamin A that has various beneficial effects including antioxidant and anti-inflammatory effects. In this study, we investigated whether retinoic acid modulates oxidative stress and inflammatory factors in a stroke animal model. A middle cerebral artery occlusion (MCAO) was performed on adult male rats to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected into the peritoneal cavity for four days before MCAO surgery. The neurobehavioral tests were carried out 24 h after MCAO and cerebral cortex tissues were collected. The cortical damage was assessed by hematoxylin-eosin staining and reactive oxygen species assay. In addition, Western blot and immunohistochemical staining were performed to investigate the activation of glial cells and inflammatory cytokines in MCAO animals. Ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) were used as markers of microglial and astrocyte activation, respectively. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were used as representative pro-inflammatory cytokines. Results showed that MCAO damage caused neurobehavioral defects and histopathological changes in the ischemic region and increased oxidative stress. Retinoic acid treatment reduced these changes caused by MCAO damage. We detected increases in Iba-1 and GFAP in MCAO animals treated with vehicle. However, retinoic acid alleviated increases in Iba-1 and GFAP caused by MCAO damage. Moreover, MCAO increased levels of nuclear factor-κB and pro-inflammatory cytokines, including TNF-α and IL-1ß. Retinoic acid alleviated the expression of these inflammatory proteins. These findings elucidate that retinoic acid regulates microglia and astrocyte activation and modulates pro-inflammatory cytokines. Therefore, this study suggests that retinoic acid exhibits strong antioxidant and anti-inflammatory properties by reducing oxidative stress, inhibiting neuroglia cell activation, and preventing the increase of pro-inflammatory cytokines in a cerebral ischemia.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Fator de Necrose Tumoral alfa/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/tratamento farmacológico , Neuroglia/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
17.
BMC Genomics ; 25(1): 244, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443816

RESUMO

BACKGROUND: Vitamin A and retinoic acid (RA, a metabolite of vitamin A), are inextricably involved to the development of skeletal muscle in animals. However, the mechanisms regulating skeletal muscle development by vitamin A remain poorly reported. The current study designed to investigate the underlying mechanism of vitamin A affecting myogenic differentiation of lamb myoblasts through transcriptome sequencing (RNA-Seq) and gene function validation experiments. It provides a theoretical basis for elucidating the regulation of vitamin A on skeletal muscle development as well as for improving the economic benefits of the mutton sheep industry. RESULTS: Newborn lambs were injected with 7,500 IU vitamin A, and longissimus dorsi (LD) muscle tissue was surgically sampled for RNA-Seq analysis and primary myoblasts isolation at 3 weeks of age. The results showed that a total of 14 down-regulated and 3 up-regulated genes, were identified between control and vitamin A groups. Among them, BHLHE40 expression was upregulated in vitamin A group lambs. Furthermore, BHLHE40 expression is significantly increased after initiation of differentiation in myoblasts, and RA addition during differentiation greatly promoted BHLHE40 mRNA expression. In vitro, RA inhibited myoblasts proliferation and promoted myoblasts myogenic differentiation through BHLHE40. Moreover, BHLHE40 was proved to inhibit the expression of the DNA binding inhibitor 3 (ID3), and meanwhile, ID3 could effectively promote myoblasts proliferation and inhibit myoblasts myogenic differentiation. CONCLUSIONS: Taken together, our results suggested that vitamin A inhibited myoblasts proliferation and promoted myoblasts myogenic differentiation by inhibiting ID3 expression through BHLHE40.


Assuntos
Tretinoína , Vitamina A , Animais , Ovinos , Vitamina A/farmacologia , Tretinoína/farmacologia , Desenvolvimento Muscular , Mioblastos , Músculos Paraespinais
18.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452090

RESUMO

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Assuntos
Células-Tronco Adultas , Plasticidade Celular , Epiderme , Folículo Piloso , Tretinoína , Cicatrização , Animais , Camundongos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/fisiologia , Epiderme/efeitos dos fármacos , Epiderme/fisiologia , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/fisiologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Rejuvenescimento/fisiologia , Técnicas de Cultura de Células , Neoplasias/patologia , Camundongos Endogâmicos C57BL
19.
Drug Metab Dispos ; 52(5): 442-454, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38485281

RESUMO

Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1ß decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.


Assuntos
Ésteres de Retinil , Vitamina A , Vitamina A/metabolismo , Vitamina A/farmacologia , Interleucina-1beta/metabolismo , Ésteres de Retinil/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Retinoides/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo
20.
Environ Pollut ; 347: 123775, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503350

RESUMO

Decabromodiphenyl ether (BDE-209), a frequently used brominated flame retardant, readily enters the environment and is difficult to degrade with bioaccumulation. BDE-209 could cause male reproductive toxicity, but the regulatory functions of Sertoli cells-secreted factors remain uncertain. In present study, male mice were treated with 75 mg/kg BDE-209 and then stopped exposure for 50 days. Exogenous Glial cell line-derived neurotrophic factor (GDNF), a Sertoli cell-secreted factor, was injected into testes of mice treated with BDE-209 for 50 days to explore the role of GDNF in BDE-209-induced reproductive toxicity. The mouse spermatogonia cell line GC-1 spg was used in vitro to further verify regulatory effects of Sertoli cells-secreted factors on meiotic initiation. The results showed that BDE-209 inhibited expressions of the self-renewal pathway GFRα-1/RAS/ERK1/2 in spermatogonial stem cells (SSCs), and reduced expressions of spermatogonia proliferation-related pathway NRG3/ERBB4 and meiosis initiation factor Stra8. Furthermore, BDE-209 decreased the levels of both GDNF and retinoic acid (RA) secreted by Sertoli cells in testes. Importantly, the alterations of above indicators induced by BDE-209 did not recover after 50-day recovery period. After exogenous GDNF injection, the decreased expression of GFRα-1/RAS/ERK in SSCs was reversed. However, the level of RA and expressions of NRG3/ERBB4/Stra8 were not restored. The in vitro experimental results showed that exogenous RA reversed the reductions in NRG3/ERBB4/Stra8 and ameliorated inhibition of GC-1 spg cells proliferation induced by BDE-209. These results suggested that Sertoli cells-secreted factors play roles in regulating various stages of germ cell development. Specifically, BDE-209 affected the self-renewal of SSCs by decreasing GDNF secretion resulting in the inhibition of GFRα-1/RAS/ERK pathway; BDE-209 hindered the proliferation of spermatogonia and initiation of meiosis by inhibiting the secretion of RA and preventing RA from binding to RARα, resulting in the suppression of NRG3/ERBB4/Stra8 pathway. As a consequence, spermatogenesis was compromised, leading to persistent male reproductive toxicity.


Assuntos
Acetatos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Éteres Difenil Halogenados , Fenóis , Células de Sertoli , Camundongos , Animais , Masculino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Testículo/metabolismo , Espermatogônias , Espermatogênese , Tretinoína/metabolismo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...